Discrete HARWHT and Discrete Fractional HARWHT Transforms

نویسنده

  • Hongqing Zhu
چکیده

This paper introduces a new transform known as HARWHT. It results from the Kronecker product of the discrete Hartley transform (DHT) and discrete Walsh-Hadamard transform (WHT). The eigenvectors and eigenvalues of the HARWHT transform matrices are presented using Kronecker product. Then, the results of the eigen decomposition of the transform matrices are used to define discrete fractional HARWHT transform. In addition, the study discusses the properties of discrete fractional HARWHT transform, such as angle additivity. Finally, the study investigates the application of the HARWHT and discrete fractional HARWHT in one and two-dimensional signal processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding discrete fractional transforms

Fractional transforms are useful tools for processing of non-stationary signals. The methods of implementing sliding discrete fractional Fourier transform (SDFRFT), sliding discrete fractional cosine transform (SDFRCT) and sliding discrete fractional sine transform (SDFRST) for real time processing of signals are presented. The performances of these sliding transforms, with regard to computatio...

متن کامل

Fixing of Cycle Slips in Dual-Frequency GPS Phase Observables using Discrete Wavelet Transforms

The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced a method based on different combinations of GPS data together with Kalman filter to solve the problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet transforms. For...

متن کامل

Positive solutions for discrete fractional initial value problem

‎‎In this paper‎, ‎the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement‎ .‎The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...

متن کامل

The discrete fractional random cosine and sine transforms

Based on the discrete fractional random transform (DFRNT), we present the discrete fractional random cosine and sine transforms (DFRNCT and DFRNST). We demonstrate that the DFRNCT and DFRNST can be regarded as special kinds of DFRNT and thus their mathematical properties are inherited from the DFRNT. Numeral results of DFRNCT and DFRNST for one and two dimensional functions have been given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011